Frequency, Wavelength and Period

University of Minnesota

Frequency, Wavelength and Period

Preliminaries and Objectives

Preliminaries

- Graph $y = \sin x$ and $y = \cos x$
- Amplitude
- Transformations of graphs (stretching vertically and horizontally).

Objectives

- Given an equation, find the period (wavelength) and frequency.
- Given a graph, find the period (wavelength) and frequency.
- Graph waves of the form $y = \pm A \sin(Bx)$ and $y = \pm A \cos(Bx)$.

University of Minnesota

Frequency, Wavelength and Period

Amplitude = 5

B changes the width of the graph

 $y = \sin(Bx)$

University of Minnesota Frequency, Wavelength and Period

University of Minnesota

Frequency, Wavelength and Period

Wavelength and Period

$$y = \sin x$$

University of Minnesota

Frequency, Wavelength and Period

Wavelength and Period

$$y = \sin(2x)$$

Period
$$=\frac{2\pi}{2}=\pi$$

University of Minnesota

Frequency, Wavelength and Period

Wavelength and Period

$$y = \sin(2x)$$

Frequency
$$=\frac{2}{2\pi}=\frac{1}{\pi}$$

Period and Frequency

$$y = \sin 4x$$

Period
$$=\frac{2\pi}{4}=\frac{\pi}{2}$$

Period
$$=\frac{2\pi}{4}=\frac{\pi}{2}$$
 Frequency $=\frac{4}{2\pi}=\frac{2}{\pi}$

General Formulas

Period = $\frac{2\pi}{B}$

Frequency =
$$\frac{B}{2\pi}$$

University of Minnesota

Frequency, Wavelength and Period

Graphing a Wave Adjusted for Period

$$y = \sin(5x)$$

Period
$$=$$
 $\frac{2\pi}{5}$ $Q = \frac{2\pi}{20} = \frac{\pi}{10}$

$$Q=\frac{2\pi}{20}=\frac{\pi}{10}$$

University of Minnesota

Frequency, Wavelength and Period

Graphing a Wave Adjusted for Period and Amplitude

$$y = -2\cos 3x$$

Period
$$=\frac{2\pi}{3}$$

$$Q=\frac{2\pi}{12}=\frac{\pi}{6}$$

University of Minnesota

Frequency, Wavelength and Period

Finding the Equation of a Wave from its Graph

Amplitude
$$= A = 3$$

Period
$$=\frac{2\pi}{B}=4\pi \Rightarrow B=\frac{2\pi}{4\pi}=\frac{1}{2}$$

Finding the Equation of a Wave from its Graph

Amplitude
$$= A = 2$$

Period
$$=\frac{2\pi}{B}=\frac{\pi}{3} \Rightarrow B=2\pi\cdot\frac{3}{\pi}=6$$

University of Minnesota

Frequency, Wavelength and Period

Recap

• Period (wavelength) is the *x*-distance between consecutive peaks of the wave graph.

Period
$$=\frac{2\pi}{B}$$
; Frequency $=\frac{B}{2\pi}$

• Use amplitude to mark *y*-axis, use period and quarter marking to mark *x*-axis.

University of Minnesota

Frequency, Wavelength and Period