Common Notation for Vectors

University of Minnesota

Common Notation for Vectors

Preliminaries and Objectives

Preliminaries

- Polar Coordinates
- Converting from rectangular coordinates to polar coordinates
- Converting from polar coordinates to rectangular coordinates

Objectives

- Define the norm and magnitude of a vector and basis vectors
- Convert among the three forms of a vector.

University of Minnesota

Common Notation for Vectors

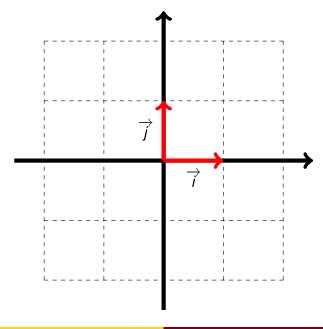
Rectangular to Polar Conversion

Rectangular Form:

$$\overrightarrow{v} = \langle a, b \rangle$$

Polar Form:

Length = Norm = Magnitude =
$$||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$$


$$\tan\theta = \frac{y}{x}$$

Example: If $\overrightarrow{v} = \langle 4, 3 \rangle$, then

$$||\overrightarrow{v}|| = \sqrt{4^2 + 3^2} = 5$$

$$\tan \theta = \frac{3}{4} \Rightarrow \theta \approx 36.9^{\circ}$$

Basis Vectors

University of Minnesota

Common Notation for Vectors

University of Minnesota

Common Notation for Vectors

Three Forms of a Vector

Rectangular Form:

$$\overrightarrow{v} = \langle a, b \rangle$$

$$a = ||\overrightarrow{v}|| \cos \theta$$

$$\overrightarrow{V} = \langle a, b \rangle$$
 $a = ||\overrightarrow{V}|| \cos \theta$ $b = ||\overrightarrow{V}|| \sin \theta$

Basis Vector Form: $\overrightarrow{V} = a\overrightarrow{i} + b\overrightarrow{j}$

$$\overrightarrow{v} = a\overrightarrow{i} + b\overrightarrow{j}$$

Polar Form:

Length = Norm = Magnitude =
$$||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$$

$$\tan\theta = \frac{y}{x}$$

University of Minnesota

Common Notation for Vectors

Example 1

Given $\overrightarrow{v} = \langle -2, 3 \rangle$, find $||\overrightarrow{v}||$, and the direction angle θ .

Solution:
$$||\vec{v}|| = \sqrt{(-2)^2 + 3^2} = \sqrt{13} \approx 3.606$$

$$\tan \theta = -\frac{3}{2}$$
; $\tan^{-1} -\frac{3}{2} \approx -56.3^{\circ}$, however \overrightarrow{v} is in

Quadrant II, so

$$\theta \approx 180 - 56.3^{\circ} \approx 123.7^{\circ}$$

University of Minnesota

Common Notation for Vectors

Example 2

Given $||\overrightarrow{v}||=$ 14 and the direction angle $\theta=$ 132°, write \overrightarrow{v} as a linear combination of \overrightarrow{i} and \overrightarrow{i}

Solution:
$$a = 14\cos 132^{\circ} \approx -9.37$$
 and $b = 14\sin 132^{\circ} \approx 10.40$

$$\overrightarrow{V} \approx -9.37 \overrightarrow{i} + 10.40 \overrightarrow{j}$$

Recap

Rectangular Form:

$$\overrightarrow{V} = \langle a, b \rangle$$
 $a = ||\overrightarrow{V}|| \cos \theta$ $b = ||\overrightarrow{V}|| \sin \theta$

Basis Vector Form: $\overrightarrow{V} = a\overrightarrow{i} + b\overrightarrow{j}$

$$\overrightarrow{V} = \overrightarrow{a} \overrightarrow{i} + \overrightarrow{b} \overrightarrow{i}$$

Polar Form:

Length = Norm = Magnitude =
$$||\overrightarrow{v}|| = \sqrt{a^2 + b^2}$$

$$\tan \theta = \frac{y}{x}$$