Finding Values of tan, cot, sec, csc

Preliminaries and Objectives

Preliminaries:

- Given the value of $\sin \theta$, find the value of $\cos \theta$
- Given the value of $\cos \theta$, find the value of $\sin \theta$

Objectives:

- Define tan, cot, sec, csc
- Given the value of any of the six trig functions, find the values of the other trig functions.

Starting with sec, or csc

Definitions

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$

 $\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$

 $csc \theta = \frac{1}{\sin \theta}$ $sec \theta = \frac{1}{\cos \theta}$

Given $\sec \theta$, first find $\cos \theta$.

Given $\csc \theta$, first find $\sin \theta$.

Example 1

If $\sin \theta = -\frac{3}{5}$ and $\cos \theta = \frac{4}{5}$, find the values of the other four trig functions.

$$\tan \theta = \frac{-3/5}{4/5} = -\frac{3}{4}$$

$$\cot \theta = -\frac{4}{3}, \qquad \sec \theta = \frac{5}{4}, \qquad \csc \theta = -\frac{5}{3}$$

Example 2

If $\sin \theta = -\frac{3}{5}$ and $\cos \theta > 0$, find the values of the other five trig

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\left(-\frac{3}{5}\right)^2 + \cos^2 \theta = 1$$

$$\left(-\frac{1}{5}\right) + \cos^2\theta = 1$$

$$\cos^2 \theta = 1 - \left(-\frac{3}{5}\right)^2 = \frac{16}{25}$$

$$\cot \theta = -\frac{4}{3}$$

$$\sec \theta = \frac{5}{4}$$

$$\cos heta = \pm rac{4}{5}$$

$$\cos \theta = \frac{4}{5}$$

$$\tan\theta = \frac{-3/5}{4/5} = -\frac{3}{4}$$

$$\cot \theta = -\frac{4}{3}$$

$$\sec \theta = \frac{5}{4}$$

$$\csc\theta = -\frac{5}{3}$$

Example 3

Given $\csc\theta = -\frac{7}{6}$ and $\pi < \theta < \frac{3\pi}{2}$, find the values of the other five trig functions.

•
$$\sin \theta = -\frac{6}{7}$$

•
$$\cos \theta = \pm \sqrt{1 - \left(-\frac{6}{7}\right)^2} = -\frac{\sqrt{13}}{7}$$
 (negative since θ is in quadrant III)

•
$$\tan \theta = \frac{-6/7}{-\sqrt{13}/7} = \frac{-6}{-\sqrt{13}} = \frac{6}{\sqrt{13}} = \frac{6\sqrt{13}}{13}$$

•
$$\cot \theta = \frac{\sqrt{13}}{6}$$

•
$$\sec \theta = \frac{-7}{\sqrt{13}} = \frac{-7\sqrt{13}}{13}$$

Example 4

Given $\tan \theta = -2$ and $\sin \theta > 0$, find the values of the other five trig functions.

• Since
$$\sin \theta > 0$$
 and $\tan \theta < 0$, then $\cos \theta < 0$ and θ is in quadrant II.

•
$$\sin \theta = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

•
$$\cos \theta = \frac{-1}{\sqrt{5}} = \frac{-\sqrt{5}}{5}$$

•
$$\cot \theta = -\frac{1}{2}$$

• $\sec \theta = -\sqrt{5}$

•
$$\csc \theta = \frac{\sqrt{5}}{2}$$

Example 5

Given $\cot \theta = 3$ and $\sin \theta < 0$, find the values of the other five trig functions

- $\tan \theta = \frac{1}{2}$
- Since $\cot \theta > 0$ and $\sin \theta < 0$, then $\cos \theta < 0$ and θ is in quadrant III.

•
$$\sin \theta = \frac{-1}{\sqrt{10}} = \frac{-\sqrt{10}}{10}$$

•
$$\cos \theta = \frac{-3}{\sqrt{10}} = \frac{-3\sqrt{10}}{10}$$

•
$$\sec \theta = \frac{-\sqrt{10}}{3}$$

•
$$\csc \theta = -\sqrt{10}$$

Recap

- Given $\csc\theta,$ take the reciprocal to find $\sin\theta,$ then proceed as usual.
- Given $\sec\theta,$ take the reciprocal to find $\cos\theta,$ then proceed as usual.
- Given $\tan\theta$, draw a right triangle and use the Pythogorean Theorem and the geometric definitions to find $\sin\theta$ and $\cos\theta$.
- Given $\cot \theta$, take the reciprocal to find $\tan \theta$, then follow the tangent procedure.

University of Minnesof

Finding Values of tan, cot, sec, csc

