Binomial Probabilities - Part II

4. University of MinNesota

Preliminaries and Objectives

Preliminaries

- Basic Probability (AND, OR, NOT)
- Pascal's Triangle
- Combinations
- Binomial Probabilities $p=1 / 2$
- Random Variables

Objectives

- Calculate probabilities in successive trials with only two outcomes, either succeed or fail.

Flip three coins

Unequally likely outcomes

A basketball player shoots 70% from the free throw line. Let $X=$ the number of shots made on two attempts.

$X=$	outcomes	probability
0	$\circ \circ$	$(.3)(.3)=.09$
1	$\bullet \circ, \circ$	$(.7)(.3)+(.3)(.7)=.42$
2	\bullet	$(.7)(.7)=.49$

Unequally likely outcomes

A basketball player shoots 70% from the free throw line. Let $X=$ the number of shots made on five attempts. What is the probability that three of the five shots are made?

 ○○•••
$P(\bullet \bullet \bullet \circ) \quad=P(\bullet \bullet \bullet \circ) \quad=\ldots$
$(.7)(.7)(.7)(.3)(.3)=(.7)(.7)(.3)(.7)(.3)=(.7)^{3}(.3)^{2}$
$P(X=3)=\binom{5}{3}(.7)^{3}(.3)^{2}=.3087$

Binomial Probability Formula

Let $p=$ probability of success on a single trial.
Let $q=1-p=$ probability of failure on a single trial.
Let X be a random variable that counts the number of successes in n independent trials.

Binomial Probability

$$
P(X=k)=\binom{n}{k} p^{k} q^{n-k}
$$

where $\binom{n}{k}$ is the $k^{\text {th }}$ entry in row n of Pascal's Triangle.

Exercise

Find the probability that a 65% free throw shooter will make 3 of 4 attempts.

Solution:

$$
P(X=3)=\binom{4}{3}(.65)^{3}(.35)=4(.65)^{3}(.35)=.384475
$$

