The Binomial Distribution and the Bell Curve

University of Minnesota

University of Minnesota

he Binomial Distribution and the Bell Curve

Preliminaries and Objectives

Preliminaries

- Pascal's Triangle
- Binomial Theorem
- Probability
- Binomial Distributitions
- Random Variables

Objectives

- Determine the percentage of a (normally distributed) population within a given range
- Confidence Intervals

University of Minnesota

The Binomial Distribution and the Bell Curve

The Bell Curve

 $\mu = \text{average value (mean)}$ $\sigma = \text{standard deviation}$

University of Minnesota

The Binemial Distribution and the Ball Curve

Binomial Distributions

University of Minnesota

The Binomial Distribution and the Bell Curve

Binomial Distributions

University of Minneso

The Binomial Distribution and the Bell Curve

Binomial Distributions

University of Minnesota

he Binomial Distribution and the Bell Curve

The Bell Curve - a.k.a. Normal Distribution

 $\mu = \text{average value (mean)}$

The Bell Curve - a.k.a. Normal Distribution

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

The Bell Curve - a.k.a. Normal Distribution

$$P(X < \mu - \sigma) \approx 0.1587$$

$$P(X > \mu - \sigma) \approx 0.8413$$

The Binomial Distribution and the Bell Cu

niversity of Minnesota The Binomial Distribution and the Bell Curve

University of Minnesota

The Binomial Distribution and the Bell Curve

The z-score or z-value is a measure of the number of standard deviations above or below average.

$$z = \frac{X - \mu}{\sigma}$$

Example: In a population, the mean $\mu = 162$ with standard deviation $\sigma = 7$, what is the z-score for a measurement of X = 148?

$$z = \frac{148 - 162}{7} = -2$$

University of Minnesota The Binomial Distribution and the Bell

Normal distribution table

z-score	P(X < z)	z-score	P(X < z)	z-score	P(X < z)
0.0	0.50000	1.0	0.84134	2.0	0.97725
0.1	0.53983	1.1	0.86433	2.1	0.98214
0.2	0.57926	1.2	0.88493	2.2	0.98610
0.3	0.61791	1.3	0.90320	2.3	0.98928
0.4	0.65542	1.4	0.91924	2.4	0.99180
0.5	0.69146	1.5	0.93319	2.5	0.99379
0.6	0.72575	1.6	0.94520	2.6	0.99534
0.7	0.75804	1.7	0.95543	2.7	0.99653
8.0	0.78814	1.8	0.96407	2.8	0.99744
0.9	0.81594	1.9	0.97128	2.9	0.99813
1.0	0.84134	2.0	0.97725	3.0	0.99865

Example 1

The mean female height is 162 cm with a standard deviation 7 cm. What is the probability that a randomly chosen female is shorter than 148 cm?

$$z = \frac{148 - 162}{7} = -2$$

$$P(X < 148) = P(z < -2) \approx 0.02275$$

University of Minnesota The Binomial Distribution and the Bell

Example 2

If X has a normal distribution with $\mu = 11$ and $\sigma = 5$, what is P(X > 14)?

$$z = \frac{14 - 11}{5} = 0.6$$

$$P(X < 14) = P(z < 0.6) \approx 0.72575$$

$$P(X > 14) = 1 - P(X < 14) \approx 0.27425$$

Confidence Intervals

In a normally distributed population, with $\mu = 100$ and $\sigma = 10$, find an interval a < X < b, such that 95% of the population falls in the interval.

 $P(z < -1.96) \approx 0.025$ and $P(z < 1.96) \approx 0.975$ so we need -1.96 < z < 1.96

$$z = -1.96 \Rightarrow \frac{X_{min} - \mu}{\sigma} = -1.96 \Rightarrow \frac{X_{min} - 100}{10} = -1.96$$

 $\Rightarrow X_{min} - 100 = -19.6 \Rightarrow X_{min} = 80.4$

Confidence Intervals

In a normally distributed population, with $\mu = 100$ and $\sigma = 10$, find an interval a < X < b, such that 95% of the population falls in the interval.

 $P(z < -1.96) \approx 0.025$ and $P(z < 1.96) \approx 0.975$ so we need -1.96 < z < 1.96

$$z = 1.96 \Rightarrow \frac{X_{max} - \mu}{\sigma} = 1.96 \Rightarrow \frac{X_{max} - 100}{10} = 1.96$$

 $\Rightarrow X_{max} - 100 = 19.6 \Rightarrow X_{max} = 119.6$

Confidence Intervals

In a normally distributed population, with $\mu = 100$ and $\sigma = 10$, find an interval a < X < b, such that 95% of the population falls in the interval.

 $P(z < -1.96) \approx 0.025$ and $P(z < 1.96) \approx 0.975$ so we need -1.96 < z < 1.96

$$P(80.4 < X < 119.6) = 95\%$$

Standard Confidence Intervals

90% confidence interval -1.645 < z < 1.645

95% confidence interval -1.960 < z < 1.960

99% confidence interval -2.576 < z < 2.576

Example 3

We wish to design a bicycle that adjusts so that 99% of the population can ride comfortably. $\mu = 162$, $\sigma = 7$. Find an interval that contains 99% of the population.

99% confidence interval \Rightarrow -2.576 < z < 2.576

$$z = \pm 2.576 \Rightarrow \frac{X - 162}{7} = \pm 2.576 \Rightarrow X = 162 \pm 2.576(7) \Rightarrow X = 162 \pm 18.03$$

99% of the population lies in the interval 143.97 < X < 180.03

Example 4

30% of parts in a manufacturing process are defective, with the other 70% being useable. A shipment of 1000 parts will, on average have $\mu = 700$ useable parts, with a standard deviation of $\sigma = 14.5$. Find a 90% confidence interval for the number of useable parts.

90% confidence interval $\Rightarrow -1.645 < z < 1.645$

Solution:

$$z = \pm 1.645 \Rightarrow \frac{X - 700}{14.5} = \pm 1.645$$

$$\Rightarrow$$
 $X = 700 \pm 1.645(14.5) \Rightarrow X = 700 \pm 23.8$

90% of the population lies in the interval 676 < X < 724

University of Minnesota The Binomial Distribution and the Bell Curve