Unions, Intersections, and Complements in Probability

University of Minnesota

University of Minnesota

nions, Intersections, and Complements in Probability

Preliminaries and Objectives

Preliminaries

- Techniques of Counting
- · Definition of Probability

Objectives

• Find probabilities of events combined using AND, OR, NOT

Unions

Example: Roll two dice. What is the probability that the total of the two dice is either 7 or 11?

	•	•	•		\blacksquare	
•	2	3	4	5	6	7
	3	4	5	6	7	8
•	4	5	6	7	8	9
	5	6	7	8	9	10
::	6	7	8	9	10	11
:::	7	8	9	10	11	12

University of Minnesota

Unions Interpostions and Complements in Brobability

Unions

Example: Roll two dice. What is the probability that the total of the two dice is either 7 or 11?

E = total is 7 $P(E) = \frac{6}{36}$ E and F are mutually exclusive

 $F = \text{total is } 11 \quad P(F) = \frac{2}{36}$

 $P(E \text{ or } F) = P(E \cup F) = P(E) + P(F) = \frac{6}{36} + \frac{2}{36} = \frac{8}{36}$

Conditional Probability

Sometimes the occurrence of an event changes our mind about the probability of another event.

University of Minnesota

F = roll > 10 on two dice

$$P(E) = \frac{1}{6}$$

$$P(F) = \frac{6}{36}$$

Conditional Probability

Sometimes the occurrence of an event changes our mind about the probability of another event.

$$E = \text{roll a}$$

F = roll > 10 on two dice

$$P(E) = \frac{1}{6}$$

$$P(F) = \frac{6}{36}$$

$$P(F \mid E) = \frac{3}{6}$$

University of Minnes

Unions, Intersections, and Complements in Probability

University of Minnesota

Unions, Intersections, and Complements in Probability

University of Minnesot

ions Intersections and Complements in Probability

Conditional Probability

	•	•	•			***
•	2	3	4	5	6	7
	3	4	5	6	7	8
•	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
:::	7	8	9	10	11	12

Independence

	•	•	•	\blacksquare	•••
•					
•					
:::					

If $P(F \mid E) = P(F)$, then E and F are independent.

Intersections

If the occurrence of event E has no effect on the occurrence of event F, then E and F are said to be **independent**.

When rolling two dice, what is the probability that both are 2?

	•	•	•.			:::
•	2	3	4	5	6	7
	3	4	5	6	7	8
	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
:::	7	8	9	10	11	12

niversity of Minnesota Linions Intersections and Complements in Probabilit

University of Minnesota

Unions, Intersections, and Complements in Probability

University of Minneso

Unions, Intersections, and Complements in Probability

Intersections

When rolling two dice, what is the probability that both are
?

$$E =$$

$$P(E \text{ and } F) = P(E \cap F) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

$$P(E \text{ and } F) = P(E \cap F) = P(E) \cdot P(F)$$

University of Minnesota

nions, Intersections, and Complements in Probability

Intersections

University of Minnesota

Unions, Intersections, and Complements in Probability

Complements

There is a 40% chance that it will rain today. What is the chance that it will not rain today?

Answer:
$$P(\text{no rain}) = 1 - P(\text{rain}) = 60\%$$

Unions Interceptions and Complements in Brobability

Unions of Independent Events

When rolling two dice, what is the probability that at least one of the dice is \blacksquare ?

	•	•	•.		\square	•••
•	2	3	4	5	6	7
	3	4	5	6	7	8
•	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
:::	7	8	9	10	11	12

$$P(E \cup F) = P(E) + P(F) - P(E \cap F) = \frac{6}{36} + \frac{6}{36} - \frac{1}{36} = \frac{11}{36}$$

University of Minnesota

Unions, Intersections, and Complements in Probability

Examples

When picking a card from a standard deck, what is the probability that ...

- 1 the card is either a ♠ or ♣?
- 2 the card is 7 and ♥?
- 3 the card is not a King?
- 4 the card is either a 7 or a ♠?

University of Minnesota

Unions, Intersections, and Complements in Probabili

Examples

When picking a card from a standard deck, what is the probability that ...

- the card is either a ♠ or ♣?
- ② the card is 7 and ♥?
- 3 the card is not a King?
- the card is either a 7 or a ♠?

Answers:

- $\frac{1}{13} \cdot \frac{1}{4} = \frac{1}{52}$

University of Minnesota

Jnions, Intersections, and Complements in Probabili

Recap

- Intersections "AND" multiply $P(E \cap F) = P(E) \cdot P(F)$ when independent
- Unions "OR" add $P(E \cup F) = P(E) + P(F) P(E \cap F)$
- Complements "NOT" subtract from 1
 P(not E) = 1 P(E)