Binomial Probabilities

University of Minnesota

Binomial Probabilities

Preliminaries and Objectives

Preliminaries

- Basic Probability (AND, OR, NOT)
- Binomial Theorem expanding $(x + y)^n$
- Pascal's Triangle
- Combinations
- Random Variables

Objectives

• Calculate probabilities in successive trials with only two outcomes, either succeed or fail.

University of Minnesota

Binomial Probabilities

Flip one coin

$$P(\text{heads}) = \frac{1}{2}$$

$$P(\text{tails}) = \frac{1}{2}$$

Flip two coins

$$P(\text{two heads}) = \frac{1}{4}$$

$$P(\text{one head, one tail}) = \frac{2}{4}$$

Random Variable

Let H = the number of heads on two flips of a coin

$$P(H=2) = \frac{1}{4}$$

$$P(H=1) = \frac{2}{4}$$

$$P(H=0) = \frac{1}{4}$$

University of Minnesota

Binomial Probabilities

Flip three coins

$$P(H=3) = \frac{1}{8}, \ P(H=2) = \frac{3}{8}, \ P(H=1) = \frac{3}{8}, \ P(H=0) = \frac{1}{8}$$

University of Minnesota

Binomial Probabilities

Pascal's Triangle - Flip five coins

$$P(H=5)=\frac{1}{32}$$

$$P(H=4)=\frac{5}{32}$$

$$P(H=5) = \frac{1}{32}$$
 $P(H=4) = \frac{5}{32}$ $P(H=3) = \frac{10}{32}$

$$P(H=2)=\frac{10}{32}$$

$$P(H=1)=\frac{5}{32}$$

$$P(H=2) = \frac{10}{32}$$
 $P(H=1) = \frac{5}{32}$ $P(H=0) = \frac{1}{32}$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the k^{th} number in row n of Pascal's Triangle.

10 10 5 1

The denominator is 2^n

 $P(H = k) = \frac{{}_{n}C_{k}}{2^{n}} = \frac{C(n, k)}{2^{n}} = \frac{\binom{n}{k}}{2^{n}}$

Example 1

Flip 7 coins, what is the probability that exactly 5 land heads?

$$P(H=5)=\frac{21}{128}\approx 0.164$$

University of Minnesota

Binomial Probabilities