Bayes Rule and Testing

University of Minnesota

Bayes Rule and Testing

Preliminaries and Objectives

Preliminaries

Probability of Events

Objectives

• Find the probability that a test subject is positive given that they tested positive.

University of Minnesota

Bayes Rule and Testing

Dragon Pox epidemic

In a community of 10,000 people, 2% of the population is infected with dragon pox. There is a test to determine whether or not an individual has dragon pox that is quite accurate. If you have dragon pox, the test will correctly determine that 99% of the time. It will read a 'false negative' only 1% of the time. Similarly, if you do not have the disease, the test will correctly determine that 97% of the time and will give a 'false positive' reading to 3% of disease-free individuals. If you test positive for dragon pox, how likely are you to actually have the disease?

Bayes Rule

<i>pop.</i> = 10000	Tested positive		Tested negative			
infected	99%	198	1%	2	2%	200
not infected	3%	294	97%	9506	98%	9800
Total		492		9508	1	0000

$$P(\text{infected} \mid +) = \frac{198}{492} \approx 40.2\%$$

University of Minnesota Bayes Rule and Testing

University of Minnesota Bayes Rule and Testing

Bayes Rule

	Tested	Tested		
	positive	negative		
infected	(.99)(.02)	(.01)(.02)	0.00	
	= .0198	= .0002	0.02	
not infooted	(.03)(.98)	(.97)(.98)	0.98	
not infected	= .0294	= .9506		
Total	.0492	.9508		

$$P(\text{infected} \mid +) = \frac{0.0198}{0.0492} \approx 40.2\%$$

University of Minnesota

Bayes Rule and Testing