Unions, Intersections, and Complements in **Probability**

University of Minnesota

Unions, Intersections, and Complements in Probability

Preliminaries and Objectives

Preliminaries

- Techniques of Counting
- Definition of Probability

Objectives

• Find probabilities of events combined using AND, OR, NOT

University of Minnesota

Unions, Intersections, and Complements in Probability

Unions

Example: Roll two dice. What is the probability that the total of the two dice is either 7 or 11?

	•	•	••.			•••
•	2	3	4	5	6	7
	3	4	5	6	7	8
••	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
•••	7	8	9	10	11	12

Unions

Example: Roll two dice. What is the probability that the total of the two dice is either 7 or 11?

$$E = \text{total is 7}$$
 $P(E) = \frac{6}{36}$ $E \text{ and } F \text{ are mutually exclusive}$

$$F = \text{total is } 11 \quad P(F) = \frac{2}{36}$$

$$P(E \text{ or } F) = P(E \cup F) = P(E) + P(F) = \frac{6}{36} + \frac{2}{36} = \frac{8}{36}$$

Conditional Probability

Sometimes the occurrence of an event changes our mind about the probability of another event.

$$E = \text{roll a}$$

$$F = \text{roll} \ge 10$$
 on two dice

$$P(E) = \frac{1}{6}$$

$$P(F) = \frac{6}{36}$$

F roll > 10 on two dies

$$P(F) = \frac{6}{36}$$

 $P(E) = \frac{1}{6}$

E = roll a

Conditional Probability

 $F = \text{roll} \ge 10$ on two dice

the probability of another event.

Sometimes the occurrence of an event changes our mind about

$$P(F \mid E) = \frac{3}{6}$$

University of Minnesota

Unions, Intersections, and Complements in Probability

University of Minnesota

Unions, Intersections, and Complements in Probability

Conditional Probability

	•	•	••			•••
•	2	3	4	5	6	7
	3	4	5	6	7	8
••	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
•••	7	8	9	10	11	12

Independence

	•	•	••		•••
•					

If $P(F \mid E) = P(F)$, then E and F are independent.

Intersections

If the occurrence of event E has no effect on the occurrence of event F, then E and F are said to be **independent**.

When rolling two dice, what is the probability that both are
?

	•	•	••	• •		•••
•	2	3	4	5	6	7
	3	4	5	6	7	8
••	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
•••	7	8	9	10	11	12

University of Minnesota

Unions, Intersections, and Complements in Probability

Intersections

When rolling two dice, what is the probability that both are
?

$$P(E \text{ and } F) = P(E \cap F) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

$$P(E \text{ and } F) = P(E \cap F) = P(E) \cdot P(F)$$

University of Minnesota

Unions, Intersections, and Complements in Probability

Intersections

Event F

Event *E*

Complements

There is a 40% chance that it will rain today. What is the chance that it will not rain today?

Answer: P(no rain) = 1 - P(rain) = 60%

Unions of Independent Events

When rolling two dice, what is the probability that at least one of the dice is ?

	•	•	••			•••
•	2	3	4	5	6	7
	3	4	5	6	7	8
••	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
•••	7	8	9	10	11	12

$$P(E \cup F) = P(E) + P(F) - P(E \cap F) = \frac{6}{36} + \frac{6}{36} - \frac{1}{36} = \frac{11}{36}$$

University of Minnesota

Unions, Intersections, and Complements in Probability

Examples

When picking a card from a standard deck, what is the probability that ...

- the card is either a ♠ or ♣?
- 2 the card is 7 and \heartsuit ?
- 3 the card is not a King?
- 4 the card is either a 7 or a ♠?

K♠	K♥	K♦	K♣
Q♠	Q♥	Q♦	Q .
J🏟	J♥	J♦	J♣
10♠	10♥	10♦	10🐥
9♠	9♥	9♦	9♣
8♠	8♥	8♦	8🐥
7♠	7♥	7♦	7♣
6♠	6♥	6♦	6♣
5♠	5♥	5♦	5♣
4♠	4♥	4♦	4🐥
3♠	3♥	3♦	3♣
2♠	2♥	2♦	2♣
A♠	A♥	A♦	A.

University of Minnesota

Unions, Intersections, and Complements in Probability

Examples

When picking a card from a standard deck, what is the probability that ...

- the card is either a ♠ or ♣?
- \bigcirc the card is 7 and \bigcirc ?
- 3 the card is not a King?
- 4 the card is either a 7 or a ♠?

Answers:

- $\frac{1}{13} \cdot \frac{1}{4} = \frac{1}{52}$
- $3 1 \frac{1}{13} = \frac{12}{13}$

Recap

- Intersections "AND" multiply $P(E \cap F) = P(E) \cdot P(F)$ when independent
- Unions "OR" add
 P(E ∪ F) = P(E) + P(F) P(E ∩ F)
- Complements "NOT" subtract from 1
 P(not E) = 1 P(E)