Binomial Probabilities - Part I

University of Minnesota

Preliminaries and Objectives

Preliminaries

- Basic Probability (AND, OR, NOT)
- Binomial Theorem expanding $(x+y)^{n}$
- Pascal's Triangle
- Combinations
- Random Variables

Objectives

- Calculate probabilities in successive trials with only two outcomes, either succeed or fail.
$P($ heads $)=\frac{1}{2}$
$P($ tails $)=\frac{1}{2}$

Flip two coins

	Second Flip	
	Heads	Tails
First	Heads	HH
Flip	HT	
	Tails	TH
		TT

Flip two coins

	Second Flip	
	Heads	Tails
First	Heads	HH
Flip	HT	
	Tails	TH

Flip two coins

$P(\mathrm{HH})=P(\mathrm{HT})=P(\mathrm{TH})=P(\mathrm{TT})=\frac{1}{4}$

Flip two coins

$P(\mathrm{HH})=P(\mathrm{HT})=P(\mathrm{TH})=P(\mathrm{TT})=\frac{1}{4}$

Flip two coins

	Second Flip	
	Heads	Tails
First	Heads	HH
Flip	HT	
	Tails	TH
		TT

$$
P(\text { two heads })=\frac{1}{4}
$$

$$
P(\text { one head, one tail })=\frac{2}{4}
$$

$P($ zero heads, two tails $)=\frac{1}{4}$

Random Variable

Let $H=$ the number of heads on two flips of a coin

$$
\begin{aligned}
& P(H=2)=\frac{1}{4} \\
& P(H=1)=\frac{2}{4} \\
& P(H=0)=\frac{1}{4}
\end{aligned}
$$

Flip three coins

Pascal's Triangle - Flip five coins

Pascal's Triangle - Flip five coins

$$
\begin{aligned}
& 1 \\
& \begin{array}{ccccccccccccc}
& & & & & 1 & & 1 & & & & & \\
& & & 1 & & & 2 & & 1 & & & \\
& & 1 & & 4 & & 6 & 3 & & 1 & & \\
& 1 & & 5 & & 10 & & 10 & 4 & & 1 & \\
1 & & 6 & & 15 & & 20 & & 15 & & 6 & & 1
\end{array} \\
& P(H=5)=\frac{1}{32} \\
& P(H=2)=\frac{10}{32} \\
& P(H=4)=\frac{5}{32} \\
& P(H=3)=\frac{10}{32} \\
& P(H=1)=\frac{5}{32} \\
& P(H=0)=\frac{1}{32}
\end{aligned}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

General Formula for Coin Flips

Flip n coins, what is the probability that exactly k land heads?

The numerator is the $k^{\text {th }}$ number in row n of Pascal's Triangle.

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

The denominator is 2^{n}

$$
P(H=k)=\frac{{ }_{n} C_{k}}{2^{n}}=\frac{C(n, k)}{2^{n}}=\frac{\binom{n}{k}}{2^{n}}
$$

Example 1

Flip 7 coins, what is the probability that exactly 5 land heads?

Example 1

Flip 7 coins, what is the probability that exactly 5 land heads?
$\begin{array}{llllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1\end{array}$

Example 1

Flip 7 coins, what is the probability that exactly 5 land heads?
$\begin{array}{llllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1\end{array}$

Example 1

Flip 7 coins, what is the probability that exactly 5 land heads?

$$
\begin{array}{llllllll}
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \\
P(H=5)=\frac{21}{128} \approx 0.164
\end{array}
$$

Credits

Written by:
Mike Weimerskirch
Narration:
Mike Weimerskirch
Graphic Design: Mike Weimerskirch

Copyright Info

(C) The Regents of the University of Minnesota \& Mike Weimerskirch
For a license please contact http://z.umn.edu/otc

