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Preliminaries and Objectives

Preliminaries
• Pascal’s Triangle
• Binomial Theorem
• Probability
• Binomial Distributitions
• Random Variables

Objectives
• Determine the percentage of a (normally distributed)

population within a given range
• Confidence Intervals
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The Bell Curve
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µ = average value (mean)
σ = standard deviation
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Binomial Distributions
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Binomial Distributions

50%

25%

0 1 2

HH

HT

THTT

Flip 2 coins

University of Minnesota The Binomial Distribution and the Bell Curve



Binomial Distributions
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Binomial Distributions
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Binomial Distributions
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Binomial Distributions
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Binomial Distributions

450 500 550

Flip 1000 coins
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The Bell Curve - a.k.a. Normal Distribution

µ

µ = average value (mean)
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The Bell Curve - a.k.a. Normal Distribution
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The Bell Curve - a.k.a. Normal Distribution

P(µ− σ < X < µ+ σ) ≈ 0.6827

µ

µ+ σµ− σ

σ σ
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The Bell Curve - a.k.a. Normal Distribution

P(X < µ+ σ) ≈ 0.8413
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µ+ σµ− σ

σ σ
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The Bell Curve - a.k.a. Normal Distribution

P(X < µ+ σ) ≈ 0.8413

P(X > µ+ σ) ≈ 0.1587

µ

µ+ σµ− σ

σ σ
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The Bell Curve - a.k.a. Normal Distribution

P(X < µ− σ) ≈ 0.1587

P(X > µ− σ) ≈ 0.8413

µ

µ+ σµ− σ

σ σ
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z-scores

The z-score or z-value is a measure of the number of standard
deviations above or below average.

z =
X − µ
σ

Example: In a population, the mean µ = 162 with standard
deviation σ = 7, what is the z-score for a measurement of
X = 148?

z =
148− 162

7
= −2
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Normal distribution table

z-score P(X < z) z-score P(X < z) z-score P(X < z)
-3.0 0.00135 -2.0 0.02275 -1.0 0.15866
-2.9 0.00187 -1.9 0.02872 -0.9 0.18406
-2.8 0.00256 -1.8 0.03593 -0.8 0.21186
-2.7 0.00347 -1.7 0.04457 -0.7 0.24196
-2.6 0.00466 -1.6 0.05480 -0.6 0.27425
-2.5 0.00621 -1.5 0.06681 -0.5 0.30854
-2.4 0.00820 -1.4 0.08076 -0.4 0.34458
-2.3 0.01072 -1.3 0.09680 -0.3 0.38209
-2.2 0.01390 -1.2 0.11507 -0.2 0.42074
-2.1 0.01786 -1.1 0.13567 -0.1 0.46017
-2.0 0.02275 -1.0 0.15866 0.0 0.50000
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Normal distribution table

z-score P(X < z) z-score P(X < z) z-score P(X < z)
0.0 0.50000 1.0 0.84134 2.0 0.97725
0.1 0.53983 1.1 0.86433 2.1 0.98214
0.2 0.57926 1.2 0.88493 2.2 0.98610
0.3 0.61791 1.3 0.90320 2.3 0.98928
0.4 0.65542 1.4 0.91924 2.4 0.99180
0.5 0.69146 1.5 0.93319 2.5 0.99379
0.6 0.72575 1.6 0.94520 2.6 0.99534
0.7 0.75804 1.7 0.95543 2.7 0.99653
0.8 0.78814 1.8 0.96407 2.8 0.99744
0.9 0.81594 1.9 0.97128 2.9 0.99813
1.0 0.84134 2.0 0.97725 3.0 0.99865
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Example 1

The mean female height is 162 cm with a standard deviation 7
cm. What is the probability that a randomly chosen female is
shorter than 148 cm?

z =
148− 162

7
= −2

P(X < 148) = P(z < −2) ≈ 0.02275
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Example 2

If X has a normal distribution with µ = 11 and σ = 5, what is
P(X > 14)?

z =
14− 11

5
= 0.6

P(X < 14) = P(z < 0.6) ≈ 0.72575

P(X > 14) = 1− P(X < 14) ≈ 0.27425
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Confidence Intervals

In a normally distributed population, with µ = 100 and σ = 10,
find an interval a < X < b, such that 95% of the population falls
in the interval.
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Confidence Intervals

In a normally distributed population, with µ = 100 and σ = 10,
find an interval a < X < b, such that 95% of the population falls
in the interval.

We typically choose the interval to be symmetric about the
mean, so we will choose the interval so that 2.5% of the
population falls below the interval and 2.5% of the population is
above the interval, with 95% of the population in the interval.
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Confidence Intervals

In a normally distributed population, with µ = 100 and σ = 10,
find an interval a < X < b, such that 95% of the population falls
in the interval.

P(z < −1.96) ≈ 0.025 and P(z < 1.96) ≈ 0.975 so we need
−1.96 < z < 1.96
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Confidence Intervals

In a normally distributed population, with µ = 100 and σ = 10,
find an interval a < X < b, such that 95% of the population falls
in the interval.

P(z < −1.96) ≈ 0.025 and P(z < 1.96) ≈ 0.975 so we need
−1.96 < z < 1.96

z = −1.96⇒ Xmin − µ
σ

= −1.96⇒ Xmin − 100
10

= −1.96

⇒ Xmin − 100 = −19.6⇒ xmin = 80.4
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Confidence Intervals

In a normally distributed population, with µ = 100 and σ = 10,
find an interval a < X < b, such that 95% of the population falls
in the interval.

P(z < −1.96) ≈ 0.025 and P(z < 1.96) ≈ 0.975 so we need
−1.96 < z < 1.96

z = 1.96⇒ Xmax − µ
σ

= 1.96⇒ Xmax − 100
10

= 1.96

⇒ Xmax − 100 = 19.6⇒ xmax = 119.6
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Confidence Intervals

In a normally distributed population, with µ = 100 and σ = 10,
find an interval a < X < b, such that 95% of the population falls
in the interval.

P(z < −1.96) ≈ 0.025 and P(z < 1.96) ≈ 0.975 so we need
−1.96 < z < 1.96

P(80.4 < X < 119.6) = 95%
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Standard Confidence Intervals

90% confidence interval −1.645 < z < 1.645

95% confidence interval −1.960 < z < 1.960

99% confidence interval −2.576 < z < 2.576
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Example 3

We wish to design a bicycle that adjusts so that 99% of the
population can ride comfortably. µ = 162, σ = 7. Find an
interval that contains 99% of the population.

99% confidence interval⇒ −2.576 < z < 2.576

z = ±2.576⇒ X − 162
7

= ±2.576⇒ X = 162± 2.576(7)⇒
X = 162± 18.03

99% of the population lies in the interval 143.97 < X < 180.03
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Example 4

30% of parts in a manufacturing process are defective, with the
other 70% being useable. A shipment of 1000 parts will, on
average have µ = 700 useable parts, with a standard deviation
of σ = 14.5. Find a 90% confidence interval for the number of
useable parts.

90% confidence interval⇒ −1.645 < z < 1.645

Solution:
z = ±1.645⇒ X − 700

14.5
= ±1.645

⇒ X = 700± 1.645(14.5)⇒ X = 700± 23.8

90% of the population lies in the interval 676 < X < 724
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