Permutations - Part II

Ti. University of Minnesota

Preliminaries and Objectives

Preliminaries

- General Counting Principle
- Permutations
- Factorial Notation

Objectives

- Count the number of ways to put k out of n objects in order.
- Notations for calculating permutations.

Partial Permutations

From a collection of five colored marbles, in how many ways, can you place three marbles in order?

Partial Permutations

From a collection of five colored marbles, in how many ways, can you place three marbles in order?
$\underline{5} \times \underline{4} \times \underline{3}=60$

Procedure for counting partial permutations

To place k out of n objects in order:

- Write k blanks.
- Put n in the first blank
- In each remaining blank, decrease the number by 1.
- Multiply the numbers in the blanks to get the final answer.

Factorial Formula for Permutations

How many ways are there to place 3 out of 5 objects in order?

Answer : $5 \times 4 \times 3=60$
$5 \times 4 \times 3=\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1}=\frac{5!}{2!}$

Permutation Formula

How many ways are there to place k out of n objects in order?

$$
\begin{gathered}
\text { Answer: } \frac{n!}{(n-k)!} \\
P(n, k)={ }_{n} P_{k}=(n)_{k}=\frac{n!}{(n-k)!}
\end{gathered}
$$

